

b-jet Tagging: DCA counting tagger status

Dennis Perepelitsa (UCB), Jin Huang(BNL), Haiwang Yu (NMSU)

The large DCA track counting b-jet tagging method

- Make minimum cut on the largest, second or third largest signed track DCA to select different portion of jets.
- This work was initialized by D. Perepelitsa. All the analysis codes was initially developed by him: https://github.com/sPHENIX-Collaboration/analysis/tree/master/HF-Jet/HighDCATrackCounting

dca2d performance with MAPS+IT+TPC tracking configuration in 2016 Sep. Tracking Review.

Progress since the Tracking Review

- dca3d development
 - some debugging to make the dca3d pull right: clustering, pattern recognition
- Hijing embedding
 - First look using the 7-layer MAPS configuration
- Kalman Filter for ladder geometry
 - Under developing with Tony and Gaku

Event display showing the norm vector used in the Kalman Filter for laddered MAPS geometry

dca3d development

Evolve to 3d DCA

- The inner MAPS detector has very good z resolution as well. Using 20 X 20 micron for both $r\phi$ and z resolution.
- Definition: (*n*: track mom. direction, *Z*: beam line direction)
 - dca3d xy: u': $n \times Z$
 - dca3d_z: v': $n \times u'$
 - sigmalized dca3d :=

$$\sqrt{\left(\frac{dca3d_{xy}}{\sigma_{xy}}\right)^2 + \left(\frac{dca3d_z}{\sigma_z}\right)^2}$$

• sign of dca: sign of $mom_{jet} \cdot dir_{dca3d}$

dca3d pull distribution

- The DCA pull distribution was tested using MAPS+TPC with truth vertex setup. So may need some further tuning for MAPS+IT+TPC with RAVE vertexing.
- The pull σ 's of dca3d_xy and dca3d_z are very close. So we could use the current setting to have a first look.

A first look at new dca3d performance

Without too much tuning, the new dca3d shows better performance than previous dca2d results.

Grey: dca2d. Sep. Simulation , quality < 1

Color: GenFit dca3d, quality < 5.

dashed: original dca, solid: sigmalized dca

Hijing embedding

Pythia pp simulation embedded in central Hijing events

- Using Hijing HepMC records generated by Mike and Ron: https://wiki.bnl.gov/sPHENIX/index.php/Eve nt generators#Location of already produce <a href="https://doi.org/doi
- Embed Pythia8 hard QCD events
- Using Jin's Jet flavor tagger to tag the Pythia jet flavor: https://github.com/sPHENIX-Collaboration/analysis/tree/master/HF-Jet/TruthGeneration

A event display showing the GenFit tracking using the 7-layer MAPS configuration.

dca3d pull in pp and Hijing simulation

First look at Hijing embedding results

Grey: Pythia pp

Color: Pythia pp ebedded in central Hijing events

dashed: original dca, solid: sigmalized

 With 0.5 GeV track pT cut, the Hijing results are already very close to pp results.
Especially the sigmalized dca results.

Summary and Plan

- Kalman Filter for laddered geometry
- Tuning cuts to further optimize the performance
- Hijing embedding with MAPS+IT+TPC

backups

Fix the Jacobian dip?

Def. 1:

sigmalized dca3d :=
$$\sqrt{\left(\frac{dca3d_{xy}}{\sigma_{xy}}\right)^2 + \left(\frac{dca3d_z}{\sigma_z}\right)^2}$$

Def. 2:

sigmalized dca3d :=
$$\left(\frac{dca3d_{xy}}{\sigma_{xy}}\right)^2 + \left(\frac{dca3d_z}{\sigma_z}\right)^2$$

Tracks in jets

Alan (no PHG4SvtxMomentumRecal, grey) vs. GenFit (with correct norm vectors, Black)

- GenFit refitted results:
 - Better pT resolution at high pT
 - Better dca2d resolution at low pT
 - Dca2d offsets are closer to 0

16

First look at Hijing embedding results

Grey: Pythia pp

Color: Pythia pp ebedded in central Hijing events

dashed: original dca, solid: sigmalized

First look at Hijing embedding results

